[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
CIVILICA
..
:: Search published articles ::
Showing 1 results for Hydrogen Generation

, , , , ,
Volume 6, Issue 1 (5-2019)
Abstract

ِDue to the rapid depletion of fossil energy resources and the environmental pollutions caused by consumption of fossil fuels, many countries have started developing renewable energy systems and finding alternative energy resources. One of the best resources of renewable energy is solar energy, which is clean and carbon-free. Solar-based energy systems can be designed in a way to produce hydrogen energy in order to supply the global energy demand, and reducing the environmental effects caused by global warming. In this study, a solar-based integrated hybrid system is considered to generate hydrogen. The system takes advantage of a flat plate collector, an organic Rankine cycle (ORC) and a PEM electrolyzer to convert renewable solar energy into electricity and hydrolyze water to hydrogen gas. To determine the optimum parameters and evaluate their effects on performance of the system, a parametric study is conducted. Outlet temperature of generator, inlet temperature of ORC turbine, irradiation intensity, water mass flow rate of the collector, and collector surface area are considered as the five decision variables. To optimize the design parameters, a multi-objective optimization is performed through the multi-objective particle swarm algorithm. The optimization results indicate that exergy efficiency of the system can increase from 1 to 3.5% meanwhile the total cost of the system can increase from 21 to 28 $/h, at optimum conditions. According to the findings, extending the collector’s surface area can lead to increasing the overall cost of the system, whilst reducing the exergy efficiency. It can also be stated that the collector component contributes to the total cost of the system noticeably.


Page 1 from 1     

مجله علمی تخصصی مهندسی مکانیک تبدیل انرژی Journal of Energy Conversion
Persian site map - English site map - Created in 0.05 seconds with 27 queries by YEKTAWEB 4679